-1) { return true; } } return false; } /* Disable tracking if the opt-out cookie exists. */ if (__gtagTrackerIsOptedOut()) { for (var index = 0; index < disableStrs.length; index++) { window[disableStrs[index]] = true; } } /* Opt-out function */ function __gtagTrackerOptout() { for (var index = 0; index < disableStrs.length; index++) { document.cookie = disableStrs[index] + '=true; expires=Thu, 31 Dec 2099 23:59:59 UTC; path=/'; window[disableStrs[index]] = true; } } if ('undefined' === typeof gaOptout) { function gaOptout() { __gtagTrackerOptout(); } } window.dataLayer = window.dataLayer || []; window.MonsterInsightsDualTracker = { helpers: {}, trackers: {}, }; if (mi_track_user) { function __gtagDataLayer() { dataLayer.push(arguments); } function __gtagTracker(type, name, parameters) { if (!parameters) { parameters = {}; } if (parameters.send_to) { __gtagDataLayer.apply(null, arguments); return; } if (type === 'event') { parameters.send_to = monsterinsights_frontend.v4_id; var hookName = name; if (typeof parameters['event_category'] !== 'undefined') { hookName = parameters['event_category'] + ':' + name; } if (typeof MonsterInsightsDualTracker.trackers[hookName] !== 'undefined') { MonsterInsightsDualTracker.trackers[hookName](parameters); } else { __gtagDataLayer('event', name, parameters); } } else { __gtagDataLayer.apply(null, arguments); } } __gtagTracker('js', new Date()); __gtagTracker('set', { 'developer_id.dZGIzZG': true, }); if ( MonsterInsightsLocations.page_location ) { __gtagTracker('set', MonsterInsightsLocations); } __gtagTracker('config', 'G-NVR5VDVPSD', {"forceSSL":"true","link_attribution":"true"} ); window.gtag = __gtagTracker; (function () { /* https://developers.google.com/analytics/devguides/collection/analyticsjs/ */ /* ga and __gaTracker compatibility shim. */ var noopfn = function () { return null; }; var newtracker = function () { return new Tracker(); }; var Tracker = function () { return null; }; var p = Tracker.prototype; p.get = noopfn; p.set = noopfn; p.send = function () { var args = Array.prototype.slice.call(arguments); args.unshift('send'); __gaTracker.apply(null, args); }; var __gaTracker = function () { var len = arguments.length; if (len === 0) { return; } var f = arguments[len - 1]; if (typeof f !== 'object' || f === null || typeof f.hitCallback !== 'function') { if ('send' === arguments[0]) { var hitConverted, hitObject = false, action; if ('event' === arguments[1]) { if ('undefined' !== typeof arguments[3]) { hitObject = { 'eventAction': arguments[3], 'eventCategory': arguments[2], 'eventLabel': arguments[4], 'value': arguments[5] ? arguments[5] : 1, } } } if ('pageview' === arguments[1]) { if ('undefined' !== typeof arguments[2]) { hitObject = { 'eventAction': 'page_view', 'page_path': arguments[2], } } } if (typeof arguments[2] === 'object') { hitObject = arguments[2]; } if (typeof arguments[5] === 'object') { Object.assign(hitObject, arguments[5]); } if ('undefined' !== typeof arguments[1].hitType) { hitObject = arguments[1]; if ('pageview' === hitObject.hitType) { hitObject.eventAction = 'page_view'; } } if (hitObject) { action = 'timing' === arguments[1].hitType ? 'timing_complete' : hitObject.eventAction; hitConverted = mapArgs(hitObject); __gtagTracker('event', action, hitConverted); } } return; } function mapArgs(args) { var arg, hit = {}; var gaMap = { 'eventCategory': 'event_category', 'eventAction': 'event_action', 'eventLabel': 'event_label', 'eventValue': 'event_value', 'nonInteraction': 'non_interaction', 'timingCategory': 'event_category', 'timingVar': 'name', 'timingValue': 'value', 'timingLabel': 'event_label', 'page': 'page_path', 'location': 'page_location', 'title': 'page_title', 'referrer' : 'page_referrer', }; for (arg in args) { if (!(!args.hasOwnProperty(arg) || !gaMap.hasOwnProperty(arg))) { hit[gaMap[arg]] = args[arg]; } else { hit[arg] = args[arg]; } } return hit; } try { f.hitCallback(); } catch (ex) { } }; __gaTracker.create = newtracker; __gaTracker.getByName = newtracker; __gaTracker.getAll = function () { return []; }; __gaTracker.remove = noopfn; __gaTracker.loaded = true; window['__gaTracker'] = __gaTracker; })(); } else { console.log(""); (function () { function __gtagTracker() { return null; } window['__gtagTracker'] = __gtagTracker; window['gtag'] = __gtagTracker; })(); }

17³Ô¹Ï

Eunhye Ahn

Eunhye Ahn’s research focuses on leveraging data to improve the outcomes of children and families and advance broader social goals of equity and justice. She is particularly interested in informing child welfare policy and practice by utilizing data science and promoting equitable child welfare outcomes through rigorous examination of racial and socioeconomic disparities.

She integrates policy knowledge in child welfare with data science approaches with an emphasis on ethics and justice. To expand our understanding of applying data science to government, policy, and protection systems in the child welfare arena, she closely collaborates with practitioners and community partners.

Her research seeks to lay the foundation for future research on aligning data science initiatives with child welfare practice and policy priorities. Some of her current projects explore the ethical use of data in child welfare to support human decision-making processes. This study also examines the biases and fairness of machine learning applied to child welfare.

Eunhye Ahn

  • Assistant Professor
  • PhD, University of Southern California
  • Email: ahne@wustl.edu

Areas of Focus:

  • Child Abuse and Neglect
  • Administrative Data
  • Data Science
  • Machine Learning Fairness